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Abstract: A novel weight-driven (or constant-force spring driven) pressure or vacuum 

reservoir design that uses an internal void space, the ribs of which experience forces 

exactly canceling the forces applied to the main reservoir chamber ribs. This construction 

ensures essentially constant pressure over the reservoir's entire permissible inflation 
range. This design is further enhanced by having no friction, besides that originating 

from the necessary hinges, by the use of novel folding corner geometries that eliminate 

essentially all pinching, creasing, rolling, or exposure to pressure by the sealing material 
(e.g., leather, rubber cloth). Two families of such corner geometries are presented and 

analyzed. The use of outward-folding ribs and corners in both the void space and the 

main reservoir chamber allows these folded corners to lie flat in their fully collapsed 

position; no rib or rib fragment is stacked upon another in their fully collapsed position.  
 

1. Introduction 

 
In the early 2000's I asked the question on the old MMD Pipes Forum as to how to build a 
weight-driven air pressure reservoir that would have equal output pressure at all reservoir 
inflation heights. At the time, the only known methods were to build a "camera-folded' 
reservoir (2 inward and 2 outward ribs with rubber-cloth or leather covering the gaps at the 
corners) or a classic 'double-rise' linked inward and outward reservoir.  (These types are 
described and illustrated at https://www.mmdigest.com/Gallery/Tech/airbounc.htm 
"Pushing and bouncing air" Figures 5 and 4 respectively). But both are problematic: the 
'camera folded' reservoir requires a big un-supported piece of rubber-cloth or leather which 
undergoes kinking and rolling motions, which cause too-rapid wear, and the 'double-rise' 
reservoir requires a specialized hinged linkage that introduces a (small) amount of friction 
and requires a decent internal bearing. 
 
Thus, I began to wonder how to build a weight-driven air pressure reservoir that would have 
exactly equal pressure at all reservoir inflation heights, with rigid corner structures moving 
only by low-friction and low-wear folding movements of the traditional canvas hinges, that 
could be built with either leather or (less elastic) rubber-cloth sealing strips, with no need to 
purchase or fabricate springs or linkages.  
 
Once into the mid 2000's with my interest in organ-building waning I had not yet found the 
answer. But a few years ago, the idea of a reservoir with internal compensating voids, built 
around the Aeolian-style inward-folding corners (as described at 
https://www.mmdigest.com/Gallery/Tech/AeoW/rv_046.html "Rebuilding the Æolian 
Orchestrelle ch. 4.6"), presented itself to my mind. That initial concept turned out to be too 
capacity-inefficient, but early in March 2025 I realized the voided reservoir design could be 
made capacity-efficient by using outward-folding ribs; the geometry of the outward-folding 
corner origami presented itself starting in late March 2025. 
  



2. Concept: The Voided Reservoir 

 
Figure 1 shows a novel reservoir or regulator design for use in organ wind systems. It is 
shown in plan view in its fully deflated state. It consists of a square outward-folding reservoir 
rib set ABCD  with a reservoir lid forming a main reservoir chamber. This sits on a large 
trunk-band (shaded) which is high enough to contain another very narrow outward-folding 
void space with lid and rib set EFGH.  The lid of the rib set EFGH  is a solid strip of board 
connected by a rigid linkage to the lid of ABCD. The bottom of the void is a slot in the 
floorboard of the trunk-band, so that the inside of the void space bounded by rib set EFGH  is 
contiguous with outside unpressurized air. The trunk-band has a solid upper surface over the 
portions not covered by ABCD  and an additional internal support wall to support the 
downward force on rib pair BC. The rib widths of ABCD  and EFGH  are equal. To minimize the 
size of the trunk-band, the rib set EFGH  and its floorboard slot may be angled with respect to 
ABCD. The perimeter of the main reservoir chamber lid and the perimeter of the void lid must 
be equal. 
 

 
Figure 1 

 
Figure 2 shows a side elevation view with the reservoir near its maximally-inflated position. 
Note the rigid connecting rod to equalize the height and inter-rib angles of the main reservoir 
chamber and the void space. If the slot in the floor of the trunk-band is found to not be large 
enough to efficiently inflate and exhaust the void space, then a linkage may be used taking the 
form of a solid plate with channels allowing air to flow between the void space and the upper, 
exposed surface of the main lid. Although the space at right above the trunk-band that 
contains the void space seems wasted, this space could be filled with additional useful 
mechanism such as large wind trunks, valve chests, etc. 
 



 
Figure 2 

 
Why do this? Johan Liljencrants explained on one of his web pages ( 
http://fonema.se/wreg/wreg.html ) To quote: "The total result is that when you fill a single, 
weight loaded inward folded reservoir the pressure decreases as you fill it. Or seen the other 
way, to maintain a constant pressure the externally applied lid force must increase as the 
bellows expands. This is the reason an inward folded bellows is preferably loaded with 
springs. By selecting a suitable spring constant you can then tune the system to render 
essentially constant pressure, independent of how much the bellows is expanded."   
 
In other words, as a single, weight loaded inward folded reservoir fills, the pressure 
decreases, and conversely as a single, weight loaded outward folded reservoir fills, the 
pressure increases. 
 
Thus, from that web page we can infer that when one uses weights (or constant-force springs) 
to pressurize a reservoir, one must include both an inward-folding and outward-folding 
section of equal rib area and where, for each unit area of outward-folding rib having a given 
dihedral angle relative to the lid, there must be a corresponding unit area of inward-folding 
rib having the supplementary dihedral angle relative to the lid 
 
Conventionally, this is achieved by a "double-rise" reservoir, where the fill height of the two 
sections (typically upper outward-folding and lower inward-folding) are equalized with a 
connecting pantograph mechanism -- which adds friction. Even then, the variance of corner 
geometry between outward- and inward-folded rib sets may cause a small nonlinearity in 
volume and pressure with lid height. If one uses leaf or coil springs instead of weights, only a 
single, inward-folding section is needed, but the springs are specialized, costly, and their 
forces need to be carefully chosen to provide a force that nearly (but not quite exactly) varies 
with reservoir expansion level. 
 
With the voided design, the pressures acting on the areas of the ribs in the void space's rib-set 
EFGH  whose interior is connected to outside air exactly offset the pressures acting on the 
areas of the ribs in the main reservoir chamber ABCD. (In addition, the equal volumes 
enclosed by lower rib-set EFGH  exactly offset the volumes enclosed by the ribs in the main 
reservoir chamber ABCD. )  This is because ABCD  and EFGH  have identical1 corner geometry 
and total rib length. Said another way, the void space appears to be an inward-folding rib set 

 
1 to within the position of the corner gasket's surface in response to whether pressure is on the 'inside' or 'outside' of the 

corner. 



from the point of view of the reservoir's pressurized interior that exactly offsets the main 
outward-folding rib set at the top of the reservoir, just as in a conventional double-rise 
reservoir. Thus, any constant force applied to the lid of the reservoir will result in exactly 
constant pressure at all reservoir expansion levels; the volume of the expandable portion of 
the reservoir is always exactly proportional to the reservoir lid's height above its deflated 
position. There is no pantograph mechanism needed. Note that since the lower rib set appears 
to be inward-folding from the point of view of the compressed air inside the reservoir, a 
maximum rib angle of 90° must be enforced, as explained below. 
 
While this design was developed with pressure in mind, this same kind of design is useable as 
a vacuum reservoir. In that case, the overall design would be inverted with the main reservoir 
chamber suspended below the trunk-band and the weight placed inside the main reservoir 
chamber tending to pull its lid downward, with the void's slot on the reservoir's 'ceiling'. 
 
If one wanted to further improve the design, rather than loading with weights which 
introduce additional inertia beyond the lids and ribs, and linkage, any constant-force springs 
in sufficient quantity could be used to provide pressure with much lower inertia. This would 
speed up reservoir response. Constant-force springs would be especially beneficial when this 
design is used as a regulator lid, or on a valve chest as a concussion bellows.  
 
Figure 3 shows how a second main reservoir chamber and a second void space and slot could 
be added to fully make use of the footprint of the reservoir and double the capacity of the 
single case of Figure 1, at the cost of additional construction complexity. 
  

 
Figure 3 

 
One could also increase the capacity by constructing the voided reservoir as a double-rise 
design. In this case, a second rigid connecting linkage is needed to connect from the middle 
frame of the upper rib sets to the middle frame of the lower rib sets. Figure 4 illustrates a side 
elevation view of this configuration, which, however, the author does not consider superior to 
the side-by-side arrangement of figure 3.   



 
                                                                  Figure 4 
 
In all weight-loaded reservoirs, it is necessary that the weights center-of-mass be exactly 
above the center of the reservoir lid. 
 
3. Six-Facet Corner Overview and Design 

 
One deficiency of the voided reservoir design elaborated thus far and alluded to above, is that 
with the corners constructed in the usual way with much of the corner consisting of a flexible 
gusset (e.g. leather), the corner geometry can vary slightly, and the gusset will bend and wear 
over time. This is especially true when one wishes to avoid the use of leather as rubber cloth 
is less elastic than leather. 
 
To allow essentially the entire rib-band of the reservoir's rib-sets to be rigid, and able to fold 
flat or conform to any allowable inflation height, I have discovered two novel 'industrial 
origami' faceted outward-folding corner patterns, constructed of 6 and 2 triangular rib 
fragments per corner, respectively. 
 
Figure 5 illustrates the six-facet corner pattern, inspired by the earlier Aeolian corner fold 
pattern mentioned above, shown in plan view in its fully flat and deflated position. and 
identifies the side ribs and rib fragments. Area ABC  is part of the reservoir (or void) lid. The 
completed side ribs will be CBHM  and ABH'Q. In a voided reservoir, the sum of the lengths of 
side ribs of the main reservoir chamber and the lengths of the side ribs of the void space must 
be equal sums. The upper half of the corner consists of isosceles triangle rib fragment GBG'  
and two other triangular rib fragments BGH  and BG'H'. 
 



 
Figure 5 

 
Figure 6 illustrates the key geometry to construct the various components. The pentagons 
ABFPQ  and CBFDM  represent the un-trimmed rib segments. Ray r  extends from the lid's 
corner B at a 45° angle, bisecting right angle DBP. The rib widths, BD  and BP, are equal. Point 
E on r  is positioned so that BE = BD = BP. Line s  is perpendicular to BE  and passed through 
E.  

 
Figure 6 



 
To begin designing a corner according to this pattern, choose a corner compactness factor. 
We'll call that value b, which can be any non-negative real number. The value b  should be 
considered as a multiple relative to the rib width. The lengths of the half-bases GE and G'E of 
the rib fragment GBG'  are the rib width times b. 
 
In general, b  values less than 1, although they produce compact corners, result in a corner 
geometry quite sensitive to machining variance and with a larger parametrical error over the 
allowable range of inflation heights. In particular, b  values in the range below 0.8 give 
unacceptably large parametrical errors even for a rib width as small as of 6 inches. 
 
I am concerned that b  values below about 1.27 (1.2657522621047… more exactly) should 
not be used in the voided reservoir. For b  values below this value, when the voided reservoir 
is fully inflated to 90° rib dihedral angle, the dihedral angles along the HG  and H'G' exceed 
90°. This is problematic because the pressurized air inside the reservoir 'sees' the rib set as an 
inward fold. To quote Johan Liljencrants again from 
https://www.mmdigest.com/Gallery/Tech/airbounc.htm : "A reservoir is normally supplied 
from some power machinery and the forces involved are considerable. With an inward folded 
bellows there is a hazard inherent from the rise in the F/P characteristic…  Keeping constant 
pressure, as angle grows you need a progressively greater force to balance it, indeed infinite 
force at a=90 deg. [at HG  dihedral angle of 180°] It is essential that you limit the angle to 
protect the bellows from such overload, otherwise it will be blown out and ripped apart."  At 
exactly this value, the HG  dihedral equals the inter-rib angle for all allowable inflation 
heights. 
 
For the voided reservoir design, a couple of b  values stand out: When b  is 1.27 it produces a 
corner geometry conducive to a narrow void of slightly over 9/8 of the rib width, at the cost of 
a somewhat higher total parametrical error (1.356mm, with ribs 6 inches wide). It also allows 
the GH  and G’H’  dihedrals to also be at 90° when fully inflated, making it easier to install their 
canvas hinges. When b  is 1.7 times the rib width, the void must have a width equal to 2 rib 
widths, decreasing the useful volume of the reservoir, but with a lower total parametrical 
error (0.926mm, with ribs 6 inches wide) and slightly more tolerance for machining variance. 
 
For other applications where the size of the corner relative to the reservoir width is not 
critical (e.g., classical non-wedge feeder bellows) a larger b  value like 3 or 4 is good. In 
general, the larger the b  value, the more tolerant the corner geometry is to machining 
variance and the smaller the parametrical error over the allowable range of inflation heights. 
 
In a voided reservoir the b  value characterizing the corners of the void must match the b 
value characterizing the upper main reservoir chamber - one cannot mix and match b  values 
within the same reservoir. 
 
The figures herein are drawn according to an example b  value of 1.2. 
 
Having chosen the b  value, the rest of the corner geometry can be inferred. Another value, c, 
is important. Optimally:  
 



𝑐 = 𝑏 + (1 −
1

√2
) 

 
The dimensions of the rib and rib fragments will normally be calculated exactly and measured 
out for machining as described below; the best precision possible in measuring and 
machining is desirable. But for completeness, here is how to construct the corner geometry 
with compass and straightedge:  
 

1. mark points G and G'  so that EG  and EG'  are both of length b  times the rib width 

2. locate point J  on BP  so that JE  is perpendicular to BP  

3. draw EJ ; set compass to length EJ  centered on E and draw arc v to intersect with 
segment BE, marking as point L 

4. along segment FM, copy the length EG  (i.e., b  times rib width) to locate point N  
so that FN = EG.  

5. along segment NM, copy the length BL  to locate point H  so that NH = BL 

6. repeat steps 5 and 6 along FQ  to locate point H' 

 
After locating G, G', H, and H'  add the line segments BG, BH, BG', BH', GH, and G'H'  to 
complete the corner geometry. 
 
In particular, taking the rib length as 1 (the rib width defines 1 unit) the relative lengths of the 
other segments are: 

segments Length 

BE 1 also, by construction 

GG' 2b 

BG  and BG' √1 + 𝑏2 

BH  and BH' √1 + (𝑐 − 1)2 

GH  and G'H' √𝑏2 − 𝑏𝑐√2 + 𝑐2 + 𝑐√2 − 2𝑐 + 3 − 2√2 

 
  



Some key angle measures of the rib fragments can be calculated as follows, from which the 
other angle measures can be readily worked out: 

angles angle measure 

∠CBH  and ∠ABH' arcsin 
1

𝐵𝐻
 

∠BGE  and ∠BG'E arctan 
1

𝑏
 

∠BEG  and ∠BEG' 90°, by construction 

∠HBG  and ∠H'BG' 135° - arctan b - arcsin 
1

𝐵𝐻
 

∠HGB  and ∠H'G'B arccos 
𝐵𝐻2−𝐵𝐺2−𝐺𝐻2

−2⋅𝐺𝐻⋅𝐵𝐺
 

∠BHG  and ∠BH'G' arccos 
𝐵𝐺2−𝐵𝐻2−𝐺𝐻2

−2⋅𝐺𝐻⋅𝐵𝐻
 

 
4. Parametrical Error Accommodation in the Six-Facet Corner 

 
Alas, the geometry of this corner design is only exactly correct at the extremes of the 
allowable range of inflation heights, namely when fully deflated and when fully inflated to 
where the ribs form a 90° angle. In between, the lengths GH and G'H' are only approximate 
and the corner will have a small parametrical error, notated as ω. 
  



The table below lists the parametrical errors for various values of b, likewise taking the rib 
length as 1 (the rib width defines 1 unit). 
 

b ω b ω b ω 

0 0.022295164 1.2 0.009624641 2.2 0.004437926 

0.1 0.030043395 1.25 0.009095044 2.3 0.004210585 

0.2 0.044879692 1.27 0.0088991 2.4 0.004005372 

0.3 0.07835664 1.3 0.008620364 2.5 0.00381921 

0.4 0.082038864 1.35 0.008192525 2.6 0.003649568 

0.5 0.046427274 1.4 0.007804951 2.7 0.003494341 

0.6 0.03078945 1.45 0.007452237 2.8 0.003351768 

0.7 0.022716731 1.5 0.007129901 2.9 0.003220364 

0.75 0.020040264 1.55 0.006834194 3 0.003098867 

0.8 0.017913937 1.6 0.006561958 3.2 0.00288143 

0.85 0.016187207 1.65 0.006310514 3.4 0.002692489 

0.9 0.014758915 1.7 0.006077575 3.6 0.00252679 

0.95 0.013558898 1.75 0.005861175 3.8 0.002380295 

1 0.012537119 1.8 0.005659618 4 0.002249849 

1.05 0.011657015 1.9 0.005295328 5 0.001765914 

1.1 0.010891292 1.95 0.005130185 6 0.001453282 

1.15 0.010219187 2 0.004975012 7 0.001234684 

1.2 0.009624641 2.1 0.004691173 8 0.001073245 

 
For b  values between 1.27 and 4, the empirical formula  

 

0.011657015⋅
1

𝑏1.1294514
 

 
gives reasonable slight over-estimates of ω.   
 
Because of this parametrical error, we must remove a tiny triangular bit off rib fragments 2a 
and 2b to avoid the corner binding in operation. Figure 7 illustrates these bits, hugely 
exaggerated for clarity. The lengths of HU, H'U', TG, and T'G'  are ω/2. 
 



 
Figure 7 

 
For example, referring to the table above, when b=1.35, ω=0.008192525. So, for a rib width 
of 7 inches, the parametrical error would be 0.057347675 inches, or about 1.46mm. Thus, HU  
and TG  should both be about 0.73mm. 
 
Generally, for typical corners designed to the range of b values of 1.27 to 4, simply sanding 
down along the whole length of BH, BG, BH', and BG' on fragments 2a and 2b (rather that 
trying to exactly remove the triangular bits HBU, TBG, H'BU', and T'BG') is sufficient and will 
not create too much play in the hinges and joint coverings of the reservoir. With rib widths 
under 6 inches, it is sufficient to sand off about 0.6mm along the length of BH, BG, BH', and 
BG'. With rib widths between 6 and 12 inches, it is sufficient to sand off about 1.2mm along 
the length of BH, BG, BH', and BG'. For b values above 4, even less sanding is needed. 
 
For much larger or more error-carrying reservoirs, characterized by rib width over 12 inches 
or b  value below 1.27, precisely trimming off the triangular bits HBU, TBG, H'BU', and T'BG'  
is important. Figure 8 illustrates the algorithm, again with the bit to be removed hugely 
exaggerated for clarity. 
 



 
Figure 8 

 
Begin with the fragment 2a already cut out in figure 8(a). Measure out HU  very precisely 
along HG  as in figure 8(b). Find a sufficiently long straightedge and place it on fragment 2a so 
that its edge coincides exactly with segment BU  as in figure 8(c). Using a spray-bottle filled 
with black watercolor paint, spray paint onto the exposed HBU  region, and allow the paint to 
dry as in figure 8(d). Finally, remove (and wash) the straightedge. Using the painted HBU  
region as a guide, sand away the HBU  region such as by a disc sander as in figure 8(e) and 
8(f). For efficiency, a set of several fragments 2a and 2b can be stacked and clamped together 
very firmly and processed as a group according to this algorithm.  Repeat the process to 
remove the TBG  bit. 
  



Especially in striving for precision, the ribs and rib fragments may be cut from one or more 
sheets using an NC machine. In that case, rather than distances and angles, it may be easier to 
specify the coordinates of the corners of the various pieces. Taking the rib width as the 1 unit 
length and point B as the origin of the coordinate system oriented with BD  lying along the 
positive y-axis, the relative coordinates of the key points are: 

point x-coordinate y-coordinate 

B 0 0 

G 
1

√2
−

𝑏

√2
 

1

√2
+

𝑏

√2
 

G’ 
1

√2
+

𝑏

√2
 

1

√2
−

𝑏

√2
 

H 1 – c 1 

H’ 1 1 - c 

U 1 − 𝑐 +
𝜔

2
⋅ 𝑐𝑜𝑠(∠𝐵𝐻𝐺 − ∠𝐶𝐵𝐻) 1 +

𝜔

2
⋅ 𝑠𝑖𝑛(∠𝐵𝐻𝐺 − ∠𝐶𝐵𝐻) 

U’ 1 +
𝜔

2
⋅ 𝑠𝑖𝑛(∠𝐵𝐻𝐺 − ∠𝐶𝐵𝐻) 1 − 𝑐 +

𝜔

2
⋅ 𝑐𝑜𝑠(∠𝐵𝐻𝐺 − ∠𝐶𝐵𝐻) 

T 
1

√2
−

𝑏

√2
−

𝜔

2
⋅ 𝑐𝑜𝑠(∠𝐵𝐻𝐺 − ∠𝐶𝐵𝐻) 

1

√2
+

𝑏

√2
−

𝜔

2
⋅ 𝑠𝑖𝑛(∠𝐵𝐻𝐺 − ∠𝐶𝐵𝐻) 

T’ 
1

√2
+

𝑏

√2
−

𝜔

2
⋅ 𝑠𝑖𝑛(∠𝐵𝐻𝐺 − ∠𝐶𝐵𝐻) 

1

√2
−

𝑏

√2
−

𝜔

2
⋅ 𝑐𝑜𝑠(∠𝐵𝐻𝐺 − ∠𝐶𝐵𝐻) 

 
5. Two-Facet Corner Overview and Design 

 
By using a two-facet corner design, it is possible to simplify construction with little or no 
increase in parametrical error in the corner, at the cost of a slightly more ungainly-looking 
corner geometry.  Figures 9 and 10 illustrate the two-facet corner pattern shown in plan view 
in its fully flat and deflated position. The pentagons EBCDF and KBCAJ  represent the un-
trimmed rib segments. The rib widths, EF  and KJ  are equal. Point B  is the corner of the 
reservoir or void space lid. 

 
Figure 9 



 

 
Figure 10 

 
To begin designing a corner according to this pattern, choose a corner compactness factor. 
We'll call that value a, which can be any non-negative real number. The value a should be 
considered as a multiple relative to the rib width. The length DG is the rib width times a.  
 
In general, a values less than 2, although they produce compact corners, result in a corner 
geometry quite sensitive to machining variance and with a larger parametrical error over the 
allowable range of inflation heights. In particular, a values in the range below 1.6 give 
unacceptably large parametrical errors even for a rib width as small as of 6 inches.  
 
Analogously to the six-facet corner, I am concerned that a values below about 2.06 
(2.05174376435691… more exactly) should not be used in the voided reservoir. For a values 
below this value, when the voided reservoir is fully inflated to 90° rib dihedral angle, the 
dihedral angles along the HG  exceed 90°.  
 
For the voided reservoir design, because the 'beak' of the corner can be oriented 
perpendicular to the void space’s length and does not affect the narrowness of the void, the 
larger the a  value, the better. This corner geometry can also be used for feeder bellows -- 
including wedge-shaped -- if the beak is configured to be perpendicular to the feeder's main 
hinge. In general, the larger the a value, the more tolerant the corner geometry is to 
machining variance and the smaller the parametrical error over the allowable range of 
inflation heights.  
 
In a voided reservoir the a value characterizing the corners of the void must match the a value 
characterizing the upper main reservoir chamber - one cannot mix and match a values within 
the same reservoir.  
 
The figures herein are drawn according to an example a value of 3.  
 
Having chosen the a value, the rest of the corner geometry can be inferred. Another value, d, is 
important. Optimally:  
 



𝑑 = 𝑎 −
1

√2
 

 
The dimensions of the rib and rib fragment will normally be calculated exactly and measured 
out for machining as described below; the best precision possible in measuring and 
machining is desirable. But for completeness, here is how to construct the corner geometry in 
reference to Figure 10 with compass and straightedge:  

 

1. extending line FC  mark point G  so that DG  is length a  times the rib width  

2. draw BC  and bisect BC  the usual way to locate point Y  

3. set compass to length CY  centered on D  and draw arc w  to intersect with segment DC, 
marking as point Z  

4. along segment CJ , copy the length ZG  to locate point H  so that CH = ZG 

5. add the line segments BG , BH , and GH  to complete the corner geometry. 

 

In particular, taking the rib length as 1 (the rib width defines 1 unit) the relative lengths of the 
other segments are: 

segments Length 

DG 𝑎, by construction 

CH d 

BG √1 + 𝑎2 

BH √1 + (𝑑 − 1)2 

GH √𝑑2 + (𝑎 − 1)2 

 
  



Some key angle measures of the rib fragments can be calculated as follows, from which the 
other angle measures can be readily worked out: 

angles angle measure 

∠ABG  and ∠BGC arctan 
1

𝑎
 

∠KBH  and ∠BHC arctan 
1

(𝑑−1)
 

∠HBA arctan (𝑑 − 1) 

∠HBG ∠HBA + ∠ABG 

∠GHC arctan 
(𝑎−1)

𝑑
 

∠GHB ∠BHC + ∠GHC 

∠HGB 180° − ∠𝐺𝐻𝐵 − ∠𝐻𝐵𝐺 

 

6. Parametrical Error Accommodation in the Two-Facet Corner 

 
The geometry of the two-facet corner design is likewise only exactly correct at the extremes of 
the allowable range of inflation heights, namely when fully deflated and when fully inflated to 
where the ribs form a 90° angle. In between, the length GH  is only approximate and the 
corner will have a small parametrical error, notated as ω.  
  



The table below lists the parametrical errors for various values of a, likewise taking the rib 
length as 1 (the rib width defines 1 unit). 
 

a ω a ω a ω 
 

0 0.017638087 2.6 0.008668158 5.2 0.003488077 

0.2 0.022919799 2.7 0.008200218 5.4 0.003334716 

0.4 0.032607253 2.8 0.007780146 5.6 0.00319427 

0.6 0.055512955 2.9 0.007400962 5.8 0.003065174 

0.8 0.144784192 3 0.007056981 6 0.002946105 

1 0.085786417 3.1 0.006743522 6.2 0.002835939 

1.2 0.041975046 3.2 0.006456699 6.4 0.002733714 

1.4 0.027270919 3.3 0.00619326 6.6 0.002638601 

1.5 0.023165575 3.4 0.005950457 6.8 0.002549883 

1.6 0.020124484 3.5 0.00572596 7 0.002466936 

1.7 0.017784017 3.6 0.005517775 7.2 0.002389214 

1.8 0.015928356 3.8 0.005143716 7.4 0.00231624 

1.9 0.014421669 3.9 0.004975071 7.6 0.002247591 

2 0.013174339 4 0.004817128 7.8 0.002182894 

2.05175 0.012609637 4.2 0.004529517 8 0.002121816 

2.1 0.012124918 4.4 0.004274301 10 0.001657919 

2.2 0.011229894 4.6 0.004046301 12 0.001360468 

2.3 0.01045761 4.8 0.003841385 14 0.001153511 

2.4 0.00978449 5 0.003656218 16 0.001001204 

2.5 0.009192623     

 
For a  values between 2.4 and 4.6, the empirical formula  

 

0. 032106⋅
1

𝑎1.357249
 

 
gives reasonable slight over-estimates of ω.   
 
Because of this parametrical error, we must remove a tiny triangular bit off the rib fragment 
HBG  to avoid the corner binding in operation. Figure 11 illustrates these bits, hugely 
exaggerated for clarity. The lengths of HU  and TG  are ω/2. 
 



 
Figure 11 

 
For example, referring to the table above, when a=3.2, ω=0.006456699. So, for a rib width of 
7 inches, the parametrical error would be 0.045196893 inches, or about 1.15mm. Thus, HU 
and TG  should both be about 0.58mm.  
 
Generally, for typical corners designed to the range of a values of 3 to 5, simply sanding down 
along the whole length of BH and BG on fragment HBG  (rather than trying to exactly remove 
the triangular bits HBU  and TBG) is sufficient and will not create too much play in the hinges 
and joint coverings of the reservoir. With rib widths under 6 inches, it is sufficient to sand off 
about 0.6mm along the length of BH and BG. With rib widths between 6 and 12 inches, it is 
sufficient to sand off about 1.1mm along the length of BH  and BG. For a values above 5, even 
less sanding is needed.  
 
For much larger or more error-carrying reservoirs, characterized by rib width over 12 inches 
or a value below 3, precisely trimming off the triangular bits HBU  and TBG is important. 
Figure 8, above, and its accompanying text, present a trimming algorithm.  
 
Taking the rib width as the 1 unit length and point B  as the origin of the coordinate system 
oriented with BA  lying along the positive y-axis, the relative coordinates of the key points are: 

point x-coordinate y-coordinate 

B 0 0 

G 1 a 

H 1 – d 1 

U 1 − 𝑑 +
𝜔

2
⋅ 𝑐𝑜𝑠(∠𝐺𝐻𝐶) 1 +

𝜔

2
⋅ 𝑠𝑖𝑛(∠𝐺𝐻𝐶) 

T 1 −
𝜔

2
⋅ 𝑐𝑜𝑠(∠𝐺𝐻𝐶) 𝑎 −

𝜔

2
⋅ 𝑠𝑖𝑛(∠𝐺𝐻𝐶) 

 



7. Planning a Two-Facet Corner Voided Reservoir 

 

Figure 12 illustrates an example of a main reservoir chamber and its associated void space in 
plan view in their fully deflated state, indicating which sums of rib edge lengths must be equal 
for the reservoir to achieve the desired constant pressure at all allowable inflation levels.  
 

 
Figure 12 

 

In this particular diagram the main reservoir chamber lid is 10 x 10 rib widths, and the void 
space lid is 0.5 x 19.5 rib widths, with an a value of 3. Thus, the inner perimeter of the main 
reservoir chamber equals the inner perimeter of the void space. In practice, a even narrower 
void space of width 0.25 rib widths should be sufficient to allow proper air flow into and out 
of the void space. 
 
Although it may be tempting to break the void space into two shorter void spaces to make the 
reservoir more space-efficient, this would disrupt the balance of forces and defeat the 
constant-pressure characteristics. This could be done, with proper calculations, with the 
“commensurability” values a=2.05174376435691… or b=1.2657522621047… but these 
values are not so good from the point of view of parametrical error, and in any case the theory 
of the commensurability of lateral ribs and corner rib fragments that would permit breaking 
the void space into separate pieces, and the associated calculations, is beyond the scope of this 
paper. 
 
That being said, there are many creative ways to arrange the main reservoir chamber(s) and 
void space(s), so long as: (1) all corners use the same geometry and a or b  values (2) the lids 
of all void spaces and main reservoir chambers are rigidly connected together to assure 
synchronized movement (3) the sum of the main reservoir chamber perimeters equal the sum 
of the void space perimeters and (4) the total number of main reservoir chamber corners 



equals the total number of void space corners. Figure 13 shows an example using an a value of 
3. Here the main reservoir chambers are 10 x 10 rib widths, while the void spaces, 0.25 x 
19.75 rib widths, are nestled into the common trunk band. 
 

 
Figure 13 

 
For calculating the force to be imposed on the main reservoir chamber lids, the same formula 
as in a simple reservoir holds true: internal pressure = lid force / lid area. In the case of the 
voided reservoir the lid area is taken as the sum of main reservoir chamber lid areas minus 
the sum of the void space lid areas. 
 
8. Construction Notes 

 

Once the fragments have been properly sanded or trimmed, they can then be contoured and 
smoothed in the normal way in preparation for joining and assembling into full rib-bands. In 
constructing each rib-band section, one may first connect the upper and lower corresponding 
ribs or rib fragments with their hinges (i.e., internal canvas hinges along the JH, UT, and GF 
edges). Next, one may dry-fit the top and bottom ribs and rib fragments of each rib-band laid 
out flat as in the uninflated state, along with their frames, using masking tape. Next, one may 
prop open the rib sets to maximum permissible inflation of 90° dihedral angle between the 
ribs to glue in internal hinges (e.g., canvas), and then finally glue on leather or rubber cloth on 
the outside of the joins. 
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